## Exercise 59

(a) Prove that the equation has at least one real root. (b) Use your graphing device to find the root correct to three decimal places.

$$
100 e^{-x / 100}=0.01 x^{2}
$$

## Solution

Bring both terms to the same side.

$$
100 e^{-x / 100}-0.01 x^{2}=0
$$

The function $f(x)=100 e^{-x / 100}-0.01 x^{2}$ is continuous everywhere because it's the difference of two functions known to be continuous everywhere, an exponential function and a polynomial function.

$$
f(x)=0
$$

Find a value of $x$ for which the function is negative, and find a value of $x$ for which the function is positive.

$$
\begin{aligned}
& f(60) \approx 18.9 \\
& f(80) \approx-19.1
\end{aligned}
$$

$f(x)$ is continuous on the closed interval [60, 80], and $N=0$ lies between $f(60)$ and $f(80)$. By the Intermediate Value Theorem, then, there exists a root within $60<x<80$. Find other values of $x$ within this interval for which the function is negative and positive.

$$
\begin{aligned}
& f(70) \approx 0.659 \\
& f(71) \approx-1.25
\end{aligned}
$$

$f(x)$ is continuous on the closed interval [70,71], and $N=0$ lies between $f(70)$ and $f(71)$. By the Intermediate Value Theorem, then, there exists a root within $70<x<71$. Find other values of $x$ within this interval for which the function is negative and positive.

$$
\begin{aligned}
& f(70.346) \approx 0.00141 \\
& f(70.347) \approx-0.000490
\end{aligned}
$$

$f(x)$ is continuous on the closed interval [70.346, 70.347], and $N=0$ lies between $f(70.346)$ and $f(70.347)$. By the Intermediate Value Theorem, then, there exists a root within $70.346<x<70.347$. The function is closer to zero at $x=70.347$ than it is at $x=70.346$. Therefore, to three decimal places, the root is

$$
x \approx 70.347 .
$$

This is reflected in the graph of $f(x)$ versus $x$.


